5,948 research outputs found

    Dynamic Change of Awareness during Meditation Techniques: Neural and Physiological Correlates

    Get PDF
    Recent fndings illustrate how changes in consciousness accommodated by neural correlates and plasticity of the brain advance a model of perceptual change as a function of meditative practice. During the mindbody response neural correlates of changing awareness illustrate how the autonomic nervous system shifts from a sympathetic dominant to a parasympathetic dominant state. Expansion of awareness during the practice of meditation techniques can be linked to the Default Mode Network (DMN), a network of brain regions that is active when the one is not focused on the outside world and the brain is restful yet awake (Chen et al., 2008). A model is presented illustrating the dynamic mindbody response before and after mindfulness meditation, and connections are made with prefrontal cortex activity, the cardiac and respiratory center, the thalamus and amygdala, the DMN and cortical function connectivity. The default status of the DMN changes corresponding to autonomic modulation resulting from meditation practice

    Does Frequency or Amount Matter? Testing the Perceptions of Four Universal Basic Income Proposals

    Get PDF
    The concept of universal basic income (UBI) first gained traction in the United States in the 1960s Civil Rights Movement and again recently due to the 2008 recession and COVID-19 pandemic. Still, the idea lags in popularity in comparison to existing cash transfer policies like the Earned Income Tax Credit and COVID relief packages. We hypothesize that this disparity is related to predicted uses of a UBI in comparison annual or lump sum cash programs. In this survey of 837 American Amazon MTurk workers, we explore whether predicted behavioral responses to four randomly assigned hypothetical cash transfer scenarios vary across the domains of amount and frequency. We find that respondents are more likely to associate monthly payments with work disincentives and lump-sum transfers with debt repayment. Implications for UBI advocates include the need to continue educating the public on the empirical associations between UBI, employment, and expenditures. This study was supported by funds from the Hayek Fund for Scholars

    Development methodology to share vehicles optimizing the variability of the mileage

    Get PDF
    A simulation is a tool used to visualize the behaviors of a system, which will later help make decisions regarding how to handle the variables involved in the system, as well as the specific changes that have to be made. This study shows a case of vehicle allocation for different people within a company, evaluating methodologies, vehicle rotation to reduce the variance of the mileage and eliminating penalties with rental agencies for exceeding the permitted mileage. The paper shows a literature review of allocation models and similar studies, and later displays a detailed description of the problem, the variables that was used, the composition of the simulation and the optimization model that were generated, the results of the simulation, and finally, the findings of the research

    The edge of neutral evolution in social dilemmas

    Get PDF
    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.Comment: 17 pages, 4 figure

    Identification of the major proteins of an immune modulating fraction from adult Fasciola hepatica released by Nonidet P40

    Get PDF
    Fasciola hepatica NP-40 released antigens (FhTeg) exhibit potent Th1 immunosuppressive properties in vitro and in vivo. However, the protein composition of this active fraction, responsible for Th1 immune modulatory activity, has yet to be resolved. Therefore, FhTeg, a Nonidet P-40 extract, was subjected to a proteomic analysis in order to identify individual protein components. This was performed using an in house F. hepatica EST database following 2D electrophoresis combined with de novo sequencing based mass spectrometry. The identified proteins, a mixture of excretory/secretory and membrane-associated proteins, are associated with stress response and chaperoning, energy metabolism and cytoskeletal components. The immune modulatory properties of these identified protein(s) is discussed and HSP70 from F. hepatica is highlighted as a potential host immune modulator for future study

    Evolutionary game dynamics in phenotype space

    Get PDF
    Evolutionary dynamics can be studied in well-mixed or structured populations. Population structure typically arises from the heterogeneous distribution of individuals in physical space or on social networks. Here we introduce a new type of space to evolutionary game dynamics: phenotype space. The population is well-mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies depend on distance in phenotype space. Individuals might behave differently towards those who look similar or dissimilar. Individuals mutate to nearby phenotypes. We study the `phenotypic space walk' of populations. We present analytic calculations that bring together ideas from coalescence theory and evolutionary game dynamics. As a particular example, we investigate the evolution of cooperation in phenotype space. We obtain a precise condition for natural selection to favor cooperators over defectors: for a one-dimensional phenotype space and large population size the critical benefit-to-cost ratio is given by b/c=1+2/sqrt{3}. We derive the fundamental condition for any evolutionary game and explore higher dimensional phenotype spaces.Comment: version 2: minor changes; equivalent to final published versio

    Large Fluctuations and Fixation in Evolutionary Games

    Get PDF
    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semi-classical WKB (Wentzel-Kramers-Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics \textit{beyond} the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker-Planck approximation when the selection intensity is finite.Comment: 17 pages, 10 figures, to appear in JSTA

    The future for diagnostic tests of acute kidney injury in critical care: evidence synthesis, care pathway analysis and research prioritisation

    Get PDF
    Background: Acute kidney injury (AKI) is highly prevalent in hospital inpatient populations, leading to significant mortality and morbidity, reduced quality of life and high short- and long-term health-care costs for the NHS. New diagnostic tests may offer an earlier diagnosis or improved care, but evidence of benefit to patients and of value to the NHS is required before national adoption. Objectives: To evaluate the potential for AKI in vitro diagnostic tests to enhance the NHS care of patients admitted to the intensive care unit (ICU) and identify an efficient supporting research strategy. Data sources: We searched ClinicalTrials.gov, The Cochrane Library databases, Embase, Health Management Information Consortium, International Clinical Trials Registry Platform, MEDLINE, metaRegister of Current Controlled Trials, PubMed and Web of Science databases from their inception dates until September 2014 (review 1), November 2015 (review 2) and July 2015 (economic model). Details of databases used for each review and coverage dates are listed in the main report. Review methods: The AKI-Diagnostics project included horizon scanning, systematic reviewing, meta-analysis of sensitivity and specificity, appraisal of analytical validity, care pathway analysis, model-based lifetime economic evaluation from a UK NHS perspective and value of information (VOI) analysis. Results: The horizon-scanning search identified 152 potential tests and biomarkers. Three tests, NephrocheckĀ® (Astute Medical, Inc., San Diego, CA, USA), NGAL and cystatin C, were subjected to detailed review. The meta-analysis was limited by variable reporting standards, study quality and heterogeneity, but sensitivity was between 0.54 and 0.92 and specificity was between 0.49 and 0.95 depending on the test. A bespoke critical appraisal framework demonstrated that analytical validity was also poorly reported in many instances. In the economic model the incremental cost-effectiveness ratios ranged from Ā£11,476 to Ā£19,324 per quality-adjusted life-year (QALY), with a probability of cost-effectiveness between 48% and 54% when tests were compared with current standard care. Limitations: The major limitation in the evidence on tests was the heterogeneity between studies in the definitions of AKI and the timing of testing. Conclusions: Diagnostic tests for AKI in the ICU offer the potential to improve patient care and add value to the NHS, but cost-effectiveness remains highly uncertain. Further research should focus on the mechanisms by which a new test might change current care processes in the ICU and the subsequent cost and QALY implications. The VOI analysis suggested that further observational research to better define the prevalence of AKI developing in the ICU would be worthwhile. A formal randomised controlled trial of biomarker use linked to a standardised AKI care pathway is necessary to provide definitive evidence on whether or not adoption of tests by the NHS would be of value. Study registration: The systematic review within this study is registered as PROSPERO CRD42014013919. Funding: The National Institute for Health Research Health Technology Assessment programme

    Mouse hypothalamic GT1-7 cells demonstrate AMPK-dependent intrinsic glucose-sensing behaviour.

    Get PDF
    AIMS/HYPOTHESIS: Hypothalamic glucose-excited (GE) neurons contribute to whole-body glucose homeostasis and participate in the detection of hypoglycaemia. This system appears defective in type 1 diabetes, in which hypoglycaemia commonly occurs. Unfortunately, it is at present unclear which molecular components required for glucose sensing are produced in individual neurons and how these are functionally linked. We used the GT1-7 mouse hypothalamic cell line to address these issues. METHODS: Electrophysiological recordings, coupled with measurements of gene expression and protein levels and activity, were made from unmodified GT1-7 cells and cells in which AMP-activated protein kinase (AMPK) catalytic subunit gene expression and activity were reduced. RESULTS: Hypothalamic GT1-7 neurons express the genes encoding glucokinase and ATP-sensitive K(+) channel (K(ATP)) subunits K ( ir ) 6.2 and Sur1 and exhibit GE-type glucose-sensing behaviour. Lowered extracellular glucose concentration hyperpolarised the cells in a concentration-dependent manner, an outcome that was reversed by tolbutamide. Inhibition of glucose uptake or metabolism hyperpolarised cells, showing that energy metabolism is required to maintain their resting membrane potential. Short hairpin (sh)RNA directed to AmpkĪ±2 (also known as Prkaa2) reduced GT1-7 cell AMPKĪ±2, but not AMPKĪ±1, activity and lowered the threshold for hypoglycaemia-induced hyperpolarisation. shAmpkĪ±1 (also known as Prkaa1) had no effect on glucose-sensing or AMPKĪ±2 activity. Decreased uncoupling protein 2 (Ucp2) mRNA was detected in AMPKĪ±2-reduced cells, suggesting that AMPKĪ±2 regulates UCP2 levels. CONCLUSIONS/INTERPRETATION: We have demonstrated that GT1-7 cells closely mimic GE neuron glucose-sensing behaviour, and reducing AMPKĪ±2 blunts their responsiveness to hypoglycaemic challenge, possibly by altering UCP2 activity. These results show that suppression of AMPKĪ±2 activity inhibits normal glucose-sensing behaviour and may contribute to defective detection of hypoglycaemia.This study was funded by: grants from the Wellcome Trust (grant numbers 068692 and 086989) and Diabetes UK (grant number RD08/0003681) to M.L.J. Ashford; a Juvenile Diabetes Research Foundation (JDRF) Postdoctoral Fellowship to C. Beall (grant number 3-576-2010); grants from JDRF and European Foundation for the study of Diabetes to R.J. McCrimmon, and from the British Heart Foundation to A. Jovanović
    • ā€¦
    corecore